A resistant estimator of multivariate location and dispersion

نویسنده

  • David J. Olive
چکیده

This paper presents a simple resistant estimator of multivariate location and dispersion. The DD plot is a plot of Mahalanobis distances from the classical estimator versus the distances from a resistant estimator and can be used to detect outliers and as a diagnostic for multivariate normality. The new estimator can be used in the DD plot, is easy to compute and provides insights about several useful robust algorithm techniques.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Two-Phase Robust Estimation of Process Dispersion Using M-estimator

Parameter estimation is the first step in constructing any control chart. Most estimators of mean and dispersion are sensitive to the presence of outliers. The data may be contaminated by outliers either locally or globally. The exciting robust estimators deal only with global contamination. In this paper a robust estimator for dispersion is proposed to reduce the effect of local contamination ...

متن کامل

Highly Robust Estimation of Dispersion Matrices

In this paper, we propose a new componentwise estimator of a dispersion matrix, based on a highly robust estimator of scale. The key idea is the elimination of a location estimator in the dispersion estimation procedure. The robustness properties are studied by means of the influence function and the breakdown point. Further characteristics such as asymptotic variance and efficiency are also an...

متن کامل

Multivariate Spatial U-Quantiles: a Bahadur-Kiefer Representation, a Theil-Sen Estimator for Multiple Regression, and a Robust Dispersion Estimator

A leading multivariate extension of the univariate quantiles is the so-called “spatial” or “geometric” notion, for which sample versions are highly robust and conveniently satisfy a Bahadur-Kiefer representation. Another extension of univariate quantiles has been to univariate U-quantiles, on the basis of which, for example, the well-known Hodges-Lehmann location estimator has a natural formula...

متن کامل

Biased Bootstrap Methods for Reducing the Effects of Contamination

Contamination of a sampled distribution, for example by a heavy-tailed distribution, can degrade the performance of a statistical estimator. We suggest a general approach to alleviating this problem, using a version of the weighted bootstrap. The idea is to “tilt” away from the contaminated distribution by a given (but arbitrary) amount, in a direction that minimises a measure of the new distri...

متن کامل

Identifying the change time of multivariate binomial processes for step changes and drifts

In this paper, a new control chart to monitor multi-binomial processes is first proposed based on a transformation method. Then, the maximum likelihood estimators of change points designed for both step changes and linear-trend disturbances are derived. At the end, the performances of the proposed change-point estimators are evaluated and are compared using some Monte Carlo simulation experimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computational Statistics & Data Analysis

دوره 46  شماره 

صفحات  -

تاریخ انتشار 2004